New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

D44VH Series

30-80 VOLTS 15 AMP, 83 WATTS TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

VERY HIGH SPEED NPN POWER TRANSISTORS COMPLEMENTARY TO THE D45VH SERIES

The D44VH is an NPN power transistor especially designed for use in switching circuits such as switching regulators, highfrequency inverters/converters and other applications where very fast switching and low-saturation voltages are necessary. This device complements the D45VH PNP power transistor and is characterized with performance information which relates directly to switching.

Features:

- Fast Switching $t_s \leqslant$ 700 ns resistive $t_f \leqslant$ 200 ns
- Low V_{CE(sat)} ≤ 0.4V @ I_C = 8A

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

RATING	SYMBOL	D44VH1	D44VH4	D44VH7	D44VH10	UNIT
Collector-Emitter Voltage	VCEO(sus)	30	45	60	80	V
Collector-Emitter Voltage	VCEX	40	55	70	90	V
Collector-Emitter Voltage	VCEV	50	65	80	100	V
Emitter Base Voltage	VEB		7			V
Collector Current — Continuous — Peak (1)	I _C I _{CM}		15 20			A
Base Current — Continuous — Peak (1)	I _B I _{BM}		5 10			A
Total Power Dissipation @ T _C = 25°C @ T _C = 100°C Derate above 25°C	PD		83 33 67			Watts
Operating and Storage Junction Temperature Range	TJ, [⊤] STG		-55 to +150			°C

maximum ratings ($T_A = 25^{\circ}C$) (unless otherwise specified)

thermal characteristics

CHARACTERISTICS	SYMBOL	MAX	UNIT
Thermal Resistance, Junction to Case	R _{ØJC}	1.5	°C/W
Thermal Resistance, Junction to Ambient	R _{ØJA}	74	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	235	°C

(1) Pulse measurement condition PW \leqslant 6.0 ms, See Figure 14.

electrical characteristics ($T_c = 25^{\circ}C$) (unless otherwise specified)

CHARACTERISTICS	SYMBOL	MIN	MAX	UNIT
off characteristics ⁽¹⁾				
Collector-Emitter Sustaining Voltage ⁽¹⁾ (I _C = 100mA, I _B = 0) D44VH1 D44VH4 D44VH7 D44VH7 D44VH10	VCEO(sus)	30 45 60 80		V
Collector-Emitter Voltage ⁽²⁾ (I _C = 1A, V _{CLAMP} = Rated V _{CEX} , T _C = 100°C) D44VH1 D44VH4 D44VH7 D44VH7 D44VH10	VCEX	40 55 65 90		V
Collector Cutoff Current (V _{CEV} = Rated Value, V _{BE(off)} = 4.0V) (V _{CEV} = Rated Value, V _{BE(off)} = 4.0V, T _C = 100°C)	ICEV	_	10 100	μA
Collector Cutoff Current (V _{CE} = Rated V _{CEV} , R _{BE} = 50 Ω, T _C = 100°C)	ICER	_	100	μA
Emitter Cutoff Current (V _{EB} = 7V, I _C = 0)	EBO	_	10	μA

second breakdown

Second Breakdown with Base Forward Biased	FBSOA	SEE FIGURE 7
Second Breakdown with Base Reverse Biased	RBSOA	SEE FIGURE 8
		The second design of the secon

on characteristics(1)

DC Current Gain (I _C = 2 A, V _{CE} = 1V) (I _C = 4 A, V _{CE} = 1V)	hFE	35 20		-
Collector-Emitter Saturation Voltage $(I_{C} = 8A, I_{B} = 0.4A)$ $(I_{C} = 8A, I_{B} = 0.4A, T_{C} = 100^{\circ}C)$ $(I_{C} = 15A, I_{B} = 3.0A, T_{C} = 100^{\circ}C)$	V _{CE(sat)}	-	0.4 0.5 0.8	V
Base-Emitter Saturation Voltage (I _C = 8A, I _B = 0.4A) (I _C = 8A, I _B = 0.4A, T _C = 100° C)	V _{BE(sat)}	_	1.2	V

dynamic characteristics

		Typical	
Current-Gain — Bandwidth Product (I _C = 0.1A, V _{CE} = 10V, f _{test} = 1 MHz)	f _T	50	MHz
Output Capacitance (V _{CB} = 10V, I _E = 0, f _{test} = 1 MHz)	COB	120	PF

switching characteristics

T _C	25°C	100°C	
td			
	50		nsec
tr	250		nsec
ts	700		nsec
tf	200		nsec
ts	800		nsec
tf	180	400	nsec
Typical			
ts	280	370	nsec
tf	130	150	nsec
	t _r ts tf ts tf ts tf	$\begin{array}{c cccc} t_r & 250 \\ t_s & 700 \\ t_f & 200 \\ \hline \\ t_s & 800 \\ t_f & 180 \\ \hline \\ t_s & 280 \\ t_f & 130 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Pulse Duration = 300 µsec, Duty Factor ≤ 2%.
See Figure 15 for Test Circuit.